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Abstract 
Many of today’s scientific simulations are capable of producing ter- 
abytes to petabytes of data. Visualization plays a critical role in 
understanding and analyzing the results of these simulations. Hard- 
ware accelerated direct volume rendering has proven to be an excel- 
lent visualization modality for both scientific and medical data sets. 
Current graphics hardware implementations limit the size of inter- 
active datasets to sizes that are orders of magnitude smaller than 
these datasets. 

We present a scalable system which takes advantage of parallel 
graphics hardware, software based compositing, and high perfor- 
mance I/O. The goals of our application are to provide near inter- 
active display rates for terabyte sized, time-varying, datasets and 
allow moderately sized datasets to be visualized in virtual environ- 
ments. We also present a novel set of direct manipulation widgets 
for interacting with, and querying, the visualization. 

I Introduction 
Visualization is an integral part of scientific computation and simu- 
lation. State of the art simulations of physical systems can generate 
terabytes to petabytes of data where a single time step can contain 
more than a gigabyte of data per variable. Sizes of some datasets are 
projected to increase at a rate close to Moore’s law. The key to un- 
derstanding this data, is the ability to visualize the global and local 
relationships of data elements. Direct volume rendering has proven 
to be an excellent method for examining these properties. It allows 
each data element to contribute to the final image and provides the 
ability to query not only the spatial relationship of data elements, 
but their quantitative relationships as well. Hardware accelerated 
volume rendering is an approach that allows users to achieve in- 
teractive display rates for reasonably sized datasets. The size of 
interactive datasets is a function of the hardware’s available texture 
memory and fill rate. Current high end hardware implementations 
place an upper bound on dataset sizes of around 256MB. In this pa- 
per, we present a scalable, pipelined approach for rendering datasets 
which are larger than the limitations of a single graphics card. We 
do this by taking advantage of multiple hardware rendering units 
and parallel software compositing. 

The goals of TRex, our system for interactive volume render- 
ing of large datasets, are to provide near interactive display rates 
for terabyte sized, time-varying, datasets and provide a low latency 
platform for volume visualization in immersive environments. We 
consider 5 frames per second ( f p s )  to be near interactive rates for 
normal viewing environments, and immersive environments to have 
a lower bound frame rate of 10 f p s .  While this is significantly below 
most virtual environment update rates, we have found that the user 
can successfully investigate extremely large datasets at this rate. 

Using TRex for virtual reality environments requires very low la- 
tency, around 50ms per frame, or lOOms per view update or stereo 
pair. To achieve lower latency renderings, we either render smaller 
portions of the volume on more graphics pipes or subsample the 
volume so that a graphics pipe renders fewer samples per frame. 
We present previous volume rendering work in the next section. We 
then provide an overview of our TRex renderer. This is followed by 
a brief discussion on multipipe compositing issues. We then de- 
scribe the enhancements we provided for immersive environments. 
We close with our current efforts in extending this system. 

2 Previous Work 
Current volume rendering methods can be grouped into three ma- 
jor categories. The first are those that lend themselves to parallel 
software implementations. These include ray casting, shear warp, 
and splatting. Ray casting [6] is essentially a special case of the ray 
tracing method. Rays are cast from an eye point through the view 
plane and intersected with volume elements. Samples taken along 
the ray are typically trilinearly interpolated and composited in a 
front to back order. Shear warp [4] takes advantage of precomputed 
coordinate axis aligned slices through the volume and replaces the 
more expensive trilinear interpolation with bilinear in these slice 
planes. This method generates arbitrary view points by orthograph- 
ically compositing the sheared slices along a major axis. This inter- 
mediate view produces a sheared version of the volume which then 
undergoes a 2D warping transformation in image space to generate 
the final image. Shear warp is considered one of the fastest soft- 
ware volume rendering methods, but can suffer from artifacts. It 
also requires three copies of the volume to remain in memory, one 
copy for each major axis. Splatting [9] is projection based method 
where each voxel is generalized into a contribution extent, typically 
achieved by convolving the voxel with a gaussian, which essentially 
eliminates the need for interpolation since the samples are the vox- 
els themselves. This method also typically composites the splats in 
a front to back order. 

The second grouping includes methods which are implemented 
on single graphics adapters. While at some level the hardware may 
take advantage of parallelism, the volume rendering is performed 
on a single graphics unit. Using texture mapping hardware, one 
can take two dimensional, axis aligned slices which take advan- 
tage of bilinear texture mapping hardware [ I ] .  These slices are 
alpha-blended to form the final image. Two-dimensional texture 
methods also suffer from the same sampling artifacts as the soft- 
ware shear warp implementation and require three copies of the 
data sliced along the major axes. Three dimensional texture based 
methods [IO] take advantage of trilinear interpolation in hardware. 
The voxels are mapped onto polygons aligned with the view di- 
rections using trilinear interpolation based upon three dimensional 
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Figure 1: Time-Varying Raleigh Taylor Fluid Instability, RAGE 
dataset (10243). 

texture mapping hardware. Lamar introduced a method of poly- 
gon slice construction based on concentric shells [5 ]  which better 
approximates the ray casting method above. The VolumePro vol- 
ume rendering board provides a hardware implementation of the 
ray casting method and can achieve high frame rates for 512’ vol- 
umes [7]. 

The third grouping includes methods which utilize hardware 
graphics units in parallel. Previous work in this area includes the 
Minnesota batch mode parallel hardware volume renderer, imple- 
mentation by Paul Woodward [l 11. This volume renderer was im- 
plemented for use on an Origin 2000. It was not designed to pro- 
vide interactive visualization, rather users create key frames which 
the application uses to produce animations. Volumizer, a propri- 
etary API from SGI for hardware volume rendering, also supports 
parallel volume rendering. The frame latency of this API, how- 
ever, increases linearly as more graphics pipes are added. Both 
implementations composite in hardware. This requires each par- 
tial image to be downloaded and composited in the user interface’s 
frame buffer. Downloading multiple images to graphics hardware 
can take considerable time, thus limiting the interactivity of these 
implementations. Furthermore, parallel rendering using Volumizer 
pipelines the compositing sequentially along the different graphics 
pipes. This leads to limited scaling with an n fiame latency where 
n is the number of graphics pipes. 

3 TRex System Overview 
The implementation presented in this paper is a hybrid parallel soft- 
ware and hardware volume renderer. It was designed to meet tar- 
get performance for near interactive display for large scale time- 
varying scientific datasets. Specifically, the system was designed to 
render full resolution, 1024’, time-varying data, such as the RAGE 
dataset in Figure 1, at nearly 5 fps on an 4-pipe Onyx-2 with IR-3 
graphics hardware. The limiting factor is the high performance I/O 
as described in section 3.2.1. Rendering is not the bottleneck as 
demonstrated by achieving over 5 fps on an 4-pipe Onyx-2 with a 
static 10243 volume. For immersive environments, we achieve 10 
f p s  using stereo pairs, albeit with reduced resolution as described 
in section 5.  The primary difference from previous parallel hard- 
ware volume rendering work is the volume renderer’s interactivity 
on extremely large datasets. This is achieved by a design that uti- 
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Figure 2: The TRex Pipeline 

lizes all available hardware components: streaming time-varying 
datasets from a carefully designed, very high-performance 110 sys- 
tem, rendering with graphics pipes and compositing the results with 
processors. We have found that interactively visualizing datasets is 
a critical first step in the analysis process, allowing users to rapidly 
gain a detailed understanding of their results. Since the hardware 
components can work independently, the parallel volume rendering 
process can be pipelined as shown in Figure 2. With overlapped 
stages, this pipeline allows us to achieve an overall performance 
which closely matches the performance of an individual graphics 
pipe. We review the details of the TRex pipeline in the following 
sections. 

3.1 Pre-processing 
Our implementation requires an off-line preprocessing step in 
which the data is quantized from its native data type, commonly 
floating point, to either 8 bit or 12 bit unsigned integer data. The 
data is then split into subvolumes with sizes matching the avail- 
able texture memory on each graphics pipe. Note that most graph- 
ics hardware implementations currently require texture dimensions 
to be a power of two. The original volume may need to be super 
sampled or padded to match this power of two requirement. It is 
advisable to perform these operations on the original floating point 
data prior to bricking to avoid quantization errors and artifacts at 
subvolume interfaces. Interface artifacts are caused by boundary 
conditions in super sampling schemes. 

3.2 The TRex Pipeline 
TRex’s rendering pipeline has four stages. Each stage is a multi- 
threaded process capable of executing simultaneously with the 
other stages. A stage consists of two main parts: an event man- 
ager which handles communication, and a functional part which 
implements the task@) of the thread. For a volume partitioned into 
N subvolumes, TRex will create N readers and N renderers. Note 
that it is not necessary for the number of compositing threads to 
equal the number of subvolumes. The ideal number of compositor 
threads is a function of both image size and the number of images 
to be composited. A user interface thread is responsible for display- 
ing the final composited image and sending user event messages to 
the other stages and the threads for supporting Immersive TRex and 
direct manipulation widgets. We discuss each of the pipeline stages 
in the following sections. 

3.2.1 Stage 1: Subvolume Reader 

The first stage of the pipeline involves reading a time step from disk. 
TRex creates a separate reader thread for each of the subvolumes 
in a time step. Provided the data resides on a well striped RAID 
and direct I/O is available, the subvolumes can be read from disk 



in parallel at approximately 140MB/sec. ’ Unfortunately this data 
rate is not fast enough to sustain our desired throughput of 5 fps for 
1024’ time-varying datasets but does provide a parallel approach 
to I/O that will work on most Silicon Graphics systems. For large 
time-varying datasets, a higher performance I/O design is required, 

A method to achieve such high performance I/O is to build a file 
system that is customized for streaming volume data directly into 
system memory and then into texture memory. On the SGI Origin 
2000 it is possible to do this by first co-locating the IIO controllers 
and graphics pipes, such that they share a common physical mem- 
ory within the NUMA architecture. This configuration avoids the 
overhead associated with routing data through the system’s inter- 
connection network, thus minimizing data transfer latency. In order 
to maximize performance, our goal for I/O is to match the approxi- 
mate BOOMB/sec texture download rate of the InfiniteReality pipes, 
For 16 pipes operating in parallel this is equivalent to a sustained 
rate of approximately 5GBhec. These rates require the use of a 
striped file system built using 64 dual fiber channel controllers and 
2,304 individual disks. This is achieved by placing 4 fiber channel 
controllers per pipe, with each fiber channel controller capable of 
7OMBlsec. This gives us a rate of 4 x 7OMB/sec= 280MB/sec for 
each pipe. Assuming we achieve the best case performance, we are 
limited by this 280MBhec rate of the I/O system. In addition we 
have also discovered that it is necessary to store subvolumes in con- 
tiguous blocks on disk to achieve these data rates. This can be done 
by using SGI’s real time filesystem (RTFS). Our initial benchmarks 
have placed this configuration capable of approximately 4GBlsec. 
We are continuing our efforts to reach the desired 5GB/sec rate. 

3.2.2 Stage 2: Render 
The second stage of the pipeline renders subvolumes in parallel. 
Each graphics pipe i s  managed by a separate rendering thread. 
These threads are initially responsible for creating OpenGL ren- 
dering windows. A renderer initializes multiple image buffers for 
simultaneous rendering with the other stages since the compositing 
stage and UI stage both rely on the image buffers as well. Raw data 
buffers, for the Reader Stage, are created by the rendering threads 
so that the memory will reside near the graphics units it will be ren- 
dered on; provided that the rendering thread has been placed on a 
processor near the unit. The number of raw data buffers is depen- 
dent on the amount of time step buffering desired plus one for the 
simultaneous reading of data and downloading to texture memory. 

Renderers receive a render message from the user interface. This 
message includes information about the current frame’s rotation, 
translation, scale, and sample rate. The OpenGL model-view ma- 
trix is set for the frame then geometry and volume data are ren- 
dered. Each renderer supports a simplistic scene graph which or- 
ders geometric primitives and subvolumes (if a pipe renders more 
than one). Our volume rendering approach uses 3D textures with ei- 
ther view aligned slicing [ 101 or an approximation to Lamar’s con- 
centric shells method [5]. The final image’s color and alpha values 
are read from the frame buffer and stored in a buffer. Finally, the 
renderer sends a message to the compositors that a new image is 
available, along with a pointer to the image buffer, and the subvol- 
ume’s distance from the eye point. 

A texture lookup table encodes the transfer function. It assigns 
color and alpha values to the scalar texture elements. The user 
makes changes to the transfer function by manipulating control 
points in color and alpha space as illustrated in Figure 3. We have 
extended the transfer function control to allow the user to select a 
boundary distance function based on Kindlmann’s semi-automatic 
transfer function generation [3]. The user can then select the ap- 
propriate portions of this automatic transfer function by manipulat- 

‘Direct I10 avoids kernel interrupt overhead and is a feature available on 
SO1 systems. 
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Figure 3: Texture Lookup Table. Note: the Alpha Band (top) has 
been multiplied by the Color Band (bottom) to show the resulting 
alpha weighted colors. 
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Figure 4: Texture Lookup Table with the Semi-Automatic genera- 
tion of alpha mappings. The top band allows the user to select data 
values based on their distance from an ideal boundary detected in 
the volume. The middle band shows the generated alpha mapping 
multiplied by the color band. 

ing control points in the alpha band (see Figure 4). If the transfer 
function or sample rate has changed since the last frame, the trans- 
fer function is updated and redownloaded to the graphics hardware 
prior to rendering a subvolume. 

3.2.3 Stage 3: Compositor 
Compositing begins once a completion message is received from 
each of the N renderers. The message includes a pointer to the 
renderer’s shared memory image buffer and the subvolume’s dis- 
tance from the eye point. A compositing thread is responsible for 
compositing N images across a horizontal stripe of the final image. 
Composite order is determined by comparing the locations of the 
subvolumes and compositing back to front. As shown in Figure 5 
when image A is composited over image B, the resulting image re- 
sides in A’s buffer. This eliminates the need for additional memory 
in the compositing stage. The first composite thread waits for the 
other compositors to finish before sending a message to the UI that 
a new image is ready for display. 

The decision to use software compositing over hardware com- 
positing was made because the task is embarrassingIy parallel and 
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Compositor Composited image 
threads in image buffer D 

Tinage buffers 
from Renderers 

Figure 5 :  Stage 3, compositing, detail. In this example 4 image 
buffers from stage 2 are composited as D over C over B over A. 
Image buffer D would then be downloaded to the UI’s frame buffer 
in Stage 4. 



the cost of downloading N images to the graphics hardware is pro- 
hibitively time consuming. Also, the graphics hardware is the criti- 
cal resource in this system. By utilizing available CPUs to compos- 
ite the partial results, we can achieve better scaling than a graph- 
ics hardware approach. Employing the available CPUs also allows 
us to overlap compositing with the rendering of the next frame re- 
sulting in only a one frame latency rather than the multiple frame 
latency imposed by the Volumizer and Minnesota hardware based 
compositing systems. 

3.2.4 Stage 4: User Interface 
The user interface thread is responsible for managing the input 
from the user and sending messages that trigger other stages of the 
pipeline. If the user changes a viewing parameter such as rotation, 
scale, translation, or the transfer function, the UI sends a request 
to the renderers along with the new view parameters for the frame. 
When a message is received indicating that a new frame is avail- 
able, the UI downloads the raw image data from the shared memory 
image buffer directly to the display’s frame buffer. 

In addition, the user has access to a quality parameter that ad- 
justs the number of samples through the volume. This parameter is 
also set automatically. When the user is in an interaction state such 
as a pending rotation or translation, the sample rate is set lower to 
increase the frames per second. Once the interaction state is com- 
pleted, i s .  the user releases the mouse click, the quality parameter 
is set higher and the volume is rendered at a higher sample rate al- 
lowing automatic progressive refinement. When the window size 
is changed, the UI will send a resize request to the renderers. The 
slave display’s window size will be changed as well as the image 
buffers. 

4 Discussion 
Applications rendering transparent objects, from back to front, gen- 
erate new color values by using Equations 1 and 2 [8]. 

Cout = a w u r c e  x Caource + (1 - asource) x Ctarget (1) 

aout = asource + (1 - asource) x atarget (2) 
Where atorget and ctarget are the alpha and color values currently 
in the frame buffer. asource and Csotlrce are the incoming alpha and 
color values. uort and cost are the new alpha and color values to 
be written to the frame buffer. 

Standard hardware implementations only allow the setting of one 
function which applies to both color and alpha channels. Since the 
equations for color and alphaare clearly different, we cannot simply 
apply color and alpha bending with Equation 1. Doing so would 
cause errors in the accumulated alpha value. Equations 3 and 4 
demonstrate what happens when alpha compositing is treated the 
same as color compositing. 

Cout = aeource x Csource + (1 - asource) x Ctarget (3) 

aout  = asource x asource + (1 - aaource) x atarget (4) 
Notice that alphasource is squared and then added to the comple- 
mented alphaJouTce times alphatarget .  This contrasts with Equa- 
tion 2 and the error can not be easily corrected. 

The solution is to pre-multiply the color values in the texture 
lookup table by their corresponding alpha values. The resulting 
Equations 5 and 6 match Equations 1 and 2 respectively, since cai 
expands to ci * ai. 

(5) Cout = casource + (1 - asource) x Ctarget 

aotrt = anoirrce + (1 - asotrrce) x atnrget (6) 
This correction is only necessary when the alpha values are used 
at some latter time, such as compositing. For display on a single 
graphics pipe, the accumulated alpha value is not important, since 
only the incoming fragment’s alpha value is used in computing the 
color value, Le. the alpha value in the frame buffer is never used for 
computing color. 

TRex allows the use of a variable sampling rate by allowing an 
arbitrary number of slices through the volume. In this situation, it 
is important to properly scale the alpha values of incoming slices so 
that the overall look of the volume is maintained regardless of the 
sample rate. The relationship between the sample rate and scaled 
alpha values is not linear. Equation 7 approximates this relation- 
ship. 

(7) alphaneo = 1 - (1 - alphaold) s7he.’ 

Where STold is the sample rate used with alphaold and srtae.w is the 
new sample rate used with alphanew. 

It is also important to note that this non-linear scaling of alpha 
values is only critical for alpha values near or less than 0.2. The 
scaling of alpha values as they approach 1 have a near linear behav- 
ior. In practice the computation required to scale alpha values based 
on Equation 4 is expensive. This, however, is compensated for by 
the fact that the texture look up tables are relatively small in size, 
256 or 4096 elements, when compared to the size of the volume 
data. 

The use of polygonal objects such as direct manipulation widgets 
and isosurfaces in conjunction with volume data requires us to take 
steps to insure that the geometry is composited with the volume 
correctly. A scene with geometry and volume composited correctly 
allows geometry to appear embedded in the volume. We currently 
limit the type of geometric objects to those that are fully opaque. 
Geometry is rendered first with depth test and depth write. Next 
the volume data is rendered from back to front with depth test only. 
This allows volume data to be rendered over geometric data but not 
behind. One difficulty of compositing subvolumes with geometric 
data is handling polygons that reside in two or more subvolumes 
or only partially in a subvolume. This can be solved by clipping 
geometry to planes corresponding to the faces of the subvolume 
which border other subvolumes. This requires at most six clipping 
planes for a subvolume which is completely surrounded by other 
subvolumes. 

TRex takes advantage of several platform specific optimizations. 
Our benchmarks on the IR graphics subsystem revealed that un- 
signed shorts were best for frame buffer reads and writes. Topology 
ofthe platform is also a concern especially in NUMA platforms like 
the Origin 2000. Data transfer latency can be significantly reduced 
by placing processes and their memory nearest the I/O devices that 
they use. This configuration avoids the overhead associated with 
routing data through the system’s interconnection network. A sig- 
nificant speed up was realized by placing the renderers and incom- 
ing data buffers near the IR pipe which they manage for the same 
reasons. 

5 lmmersive TRex 
Using TRex in an immersive environment adds another level of 
complexity to the rendering pipeline. First, a stereo pair must be 
generated for each new viewpoint. This requires twice the fill rate 
as a monocular viewpoint. Achieving target frame rates requires 
that we decrease the number of samples that each graphics pipe 
must process per frame. One solution is to increase the number of 
graphics pipes, rendering threads, and compositors. This requires 
rebricking the dataset so that smaller subvolumes are rendered on 
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Figure 6: View Point construction for Semi-Immersive Environ- 
ments (A) ,  and Fully-Immersive Environments (B) for an arbitrary 
head orientation. Notice: View directions are parallel and perpen- 
dicularly intersect the view surface. The overlap region in B is 
variable on many head mounted displays 

each pipe. Reducing the overall size of the dataset via subsampling 
is another option if additional graphics units are not available. Sub- 
sampling, however, has the side effect of blurring fine details. The 
number of compositer threads in either case needs to be increased 
to match the lower latency of the rendering stage. 

Second, tracking devices are essential for creating an immersive 
environment. Typically a separate daemon process communicates 
with the tracking device and reports position and orientation to a 
shared memory arena. A TRex VR session will create an addi- 
tional thread for monitoring and reporting head and haddevice 
data to the UI. Since multiple tracking devices are available, such as 
Polhemus Fast Track(TM) and Ascension Flock of Birds(TM), 
and interaction devices may vary, the VR thread is responsible for 
mapping events from the current tracking and interaction devices to 
a set of events which the TRex UI understands. 

New viewpoints are generated using parallel viewing directions 
with asymmetrical, or sheared, frustums (see Figure 6). Head ori- 
entation in semi-immersive environments such as the Responsive 
Workbench(TM Fakespace) is essentially disregarded. This is 
because we can treat eyes as points, and assume the portal to the 
virtual space (view surface) is fixed in the real space. View di- 
rection for semi-immersive environments is determined by the line 
from the eye point in real space which perpendicularly intersects 
the view surface plane. For fully immersive environments, such as 
those achieved with n- Visions Datavisor(TM) head mounted dis- 
plays, eyes are still treated as points but head orientation is required 
to specify the virtual portal. View direction for fully immersive en- 
vironments is specified by head orientation, and eyes are assumed 
to be looking forward. 

View aligned slicing causes artifacts when the volume is close to 
the user and rendered with perspective projection. Lamar’s spher- 
ical shell slicing reduces this problem by assuring that the volume 
is rendered with differential slices which are perpendicular to the 
line from the center of projection to the volume element being ren- 
dered. Our approach uses an adaptive tessellation of the spherical 
shell. While coarse tessellations can cause artifacts, fine tessella- 
tions can cause significant latency in the rendering. We allow the 
user to select a tessellation which is appropriate for the visualiza- 
tion. 

6 TRex Widgets: 
Direct manipulation widgets [2] can improve the quality and pro- 
ductivity of interactive visualization. Widgets also allow the user 
to have a uniform experience when using either the desktop and an 
immersive environment. 

Our widget sets were created using the Brown University wid- 
get paradigm. The widgets are object oriented, extendible entities 
which maintain state similar to a discrete finite automaton. They are 
based on simple parts such as spheres, bars, and sliders. Complex 
widgets are constructed from these sub-parts. Each sub-part repre- 
sents some functionality of the widget. For instance, the bars which 
make up the boundary of a frame widget when selected would trans- 
late the whole frame, the spheres which bracket the corners would 
scale the frame, sliders attached to the bars would alter some scalar 
value associated with the functionality of the widget. 

To facilitate parallel rendering, a typical widget is broken into 
N+1 lightweight threads, where N is the number of subvolumes 
in the session. A parent thread is responsible for handling events 
from the UI and communicating with the child threads. The N 
child threads are responsible for rendering the widget and perform- 
ing subvolume specific tasks. Each child thread is associated with 
a subvolume and is clipped to the half planes corresponding to the 
faces of the subvolume which border other subvolumes. We have 
developed three custom widgets for use with TRex. 

The color map widget places the transfer function in the scene 
with the volume being rendered. This provides a tighter coupling 
between the actual data values and their representation as a color 
value in the image. The color map widget is composed of three 
bands, one for color to data value mapping, one for opacity to data 
value mapping, and one for the semi-automatic generation of opac- 
ity mappings [3]. This widget also includes sliders, as can be seen 
in Figure 7(a), for manipulating the high quality sample rate, inter- 
active sample rate, and opacity scaling. 

We developed a data probe widget to allow the user to query the 
visualization for local quantitative information. This widget can be 
used to point to a region of the volume and automatically query the 
original data for the values at that location. This widget is particu- 
larly useful for studying data from physical simulations where the 
actual value at a location is of interest. Figure 7(c) shows a dataset 
employing the data probe widget. 

The internal structure of volumetric data is often obscured by 
other portions of the volume. One method for revealing hidden in- 
formation is to use clipping planes to remove the regions which 
occlude. For this purpose we developed a widget which allows the 
user to position and orient an arbitrary clipping plane in the scene. 
Because of the amorphous quality of some volume renderings, it 
is necessary to map a slice to the clipping plane with a different 
transfer function to make the clipped boundary apparent. One use- 
ful mapping is a simple data value to gray scale and a linear alpha 
ramp from low to high (see Figure 7(b)). This sort of mapping is 
particularly useful for radiology datasets where users are more ac- 
customed to viewing slices, rather than the whole volume. 

7 Conclusions and Future work 
Hardware volume rendering is a highly effective interactive visu- 
alization modality. Unfortunately, it imposes limits on the size of 
volumetric datasets which can be rendered with adequate update 
rates. We have presented a scalable solution for the near interactive 
visualization of dataset time steps which are potentially an order 
of magnitude larger than the capabilities of a modern graphics card 
alone. Our implementation is also flexible enough to support ad- 
vanced interaction tools and serve as a platform for future volume 
rendering and visualization research. The results of our research 



Clip Widget 

Interactive High Quality 
sample rate sample rate 

(a) Clip and Color Map widgets, Visualization is a MRI of a sheep heart 
(5123) with cut-away showing atrium, ventricle, and valve. 

are currently being integrated in a production quality application 
for use by scientists at Los Alamos National Laboratory. 

With the recent performance gains in the commodity graphics 
card market, we are currently investigating PC clusters as a replace- 
ment for the Origin 2000 system presented in this paper. While 
we have successfully managed to get TRex running on a PC clus- 
ter, this task presents several significant challenges. The limita- 
tions present in both the internal PC architecture and interconnec- 
tion networks will make it difficult to maintain our near interactive 
rendering rates. There are also several areas in which our current 
algorithms need to be modified so they operate efficiently in a dis- 
tributed memory environment. In addition, the new functionality 
available in the rasterization hardware of recent commodity graph- 
ics cards offer a number of shading options at a per pixel level. We 
intend to implement parallel, diffuse shaded volumes, as well as 
explore alternative shading methods. 

Currently, TRex only supports opaque geometry which must be 
downloaded and rendered on each graphics pipe. We intend to ex- 
tend TRex to render both opaque and transparent geometry embed- 
ded within the volume data in a parallel, load balanced, fashion. 

Finally, we are enhancing TRex’s VR capabilities with intuitive 
interaction devices and new widgets. We will be exploring opti- 
mizations to TRex’s pipeline, such as predictive tracking, which 
take advantage of the known inter-frame latency. Direct manipula- 
tion widgets have proven to be an indispensable tool for interactive 
visualization and immersive environments. We are developing a 
suite of widgets to perform various operations on volumetric data 
such as classification, segmentation, annotation, editing, multiple 
channel and vector volume visualization. In addition to their virtual 
world representation, widgets can have a physical representation 
associated with the interaction devices employed. To this end, we 
intend to develop custom interaction devices derived from common 
hand held and desktop devices specifically for this type of visual- 
ization. We are also considering the addition of other visualization 
modalities such as haptic feedback and auralizaion. 

(h) Linear Ramp Transfer function used with Clip Widget. 
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